Correlation of Rates of Solvolysis of 2-Tricyclo[3.3.0.0^{3,7}]octyl Tosylate with the 2-Aryl <u>p</u>-Nitrobenzoates. Evidence for the Absence of Anchimeric Assistance

Edward N. Peters

Union Carbide Corporation, Chemicals and Plastics, 1 River Road, Bound Brook, New Jersey 08805

(Received in USA 3 December 1976; received in UK for publication 28 January 1977) The 2-tricyclo[3.3.0.0^{3,7}]octyl system, 1, undergoes solvolysis to give rearranged product, the 2-tricyclo[3.2.1.0^{3,6}] octyl system, 2.1

It has been postulated that the secondary derivatives $(\frac{1}{\sqrt{2}}, R=H)$ solvolyze with anchimeric assistance.¹ The exact amount of assistance has been difficult to determine because of the lack of a suitable model system which solvolyzes without participation.²

Indeed, Sauers and O'Hara have concluded from the solvolysis of the tertiary aryl <u>p</u>-nitrobenzoates (1; R = aryl, X = OPNB) that the tertiary

751

derivatives do not ionize with σ participation to form rearranged cations, but that their results were more consistantly interpreted in terms of formation of unrearranged tertiary cations which subsequently may rearrange.³ Moreover, they suggest that their findings indicate that the estimated anchimeric assistance for the secondary system is in error.³ Thus, the significance of anchimeric assistance in 1 is uncertain.

However, the $\rho\gamma^+$ relationship (1) has been recently applied to the elucidation of anchimeric assistance in various systems and was shown to be valuable in evaluating neighboring group effects.⁴ The $\rho\gamma^+$ relationship permits the direct correlation of the rates of acetolysis of secondary tosylates with their corresponding tertiary benzylic derivatives.

$$\log \frac{k}{k_{e}} = \rho \gamma^{+}$$
 (1)

The versatility of the $\rho\gamma^+$ relationship was shown in correlating rates of numerous tertiary benzylic chlorides and <u>p</u>-nitrobenzoates with the rate of acetolysis of the corresponding secondary tosylate. Indeed, the $\rho\gamma^+$ relationship is useful in elucidating both π and σ participation. For example, with this technique rate enhancements as low as 18 can be assigned to anchimeric assistance in 2-<u>exo</u>-norbornenyl tosylate.⁴ Therefore, this technique was applied to 1. The results appear in Figure 1.

The rates of the tertiary aryl p-nitrobenzoates (1; R = aryl, X = OPNB) in 90% acetone at 25° were reported by Sauers and O'Hara.³ The rate of acetolysis at 25° for the secondary tosylate (1; R = H, X = OTS), 1.19 x 10⁻⁷ sec⁻¹,⁵ was corrected to the rate of a p-nitrobenzoate in 90% acetone by multiplying the rate of acetolysis by 1.3 x 10⁻¹⁸ to give 1.54 x 10⁻¹¹ sec⁻¹.⁶ The $\rho\gamma^+$ plot is shown in Figure 1.

An excellent linear correlation was obtained with a rho of -4.00 (correlation coefficient 0.998). Clearly these results give no indication of any significant amount of anchimeric assistance in the secondary derivative. Thus, the formation of rearranged product, $\frac{2}{\sqrt{2}}$, must occur after the rate determining step.

References and Notes

- (1) (a) P. K. Freeman, R. B. Kinnel, and T. D. Ziebarth, <u>Tetrahedron Let.</u>,
 1059 (1970). (b) R. R. Sauers and B. R. Sickles, <u>ibid.</u>, 1067 (1970).
- For a discussion on the importance of a suitable reference system see
 H. C. Brown and E. N. Peters, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 1927 (1975).
- (3) R. R. Sauers and E. M. O'Hara, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 2510 (1974).
- (4) E. N. Peters, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 5627 (1976).
- (5) Rate at 25° was calculated from literature data: R. R. Sauers, K. W. Kelly, and B. R. Sickles, <u>J. Org. Chem.</u>, <u>37</u>, 537 (1972).
- (6) Correction factor was determined experimentally by P. G. Gassman and A. F.
 Fentiman, Jr., J. Am. Chem. Soc., 92, 2549 (1970).